Assessing the Age Specificity of Infection Fatality Rates for COVID-19: Systematic Review, Meta-Analysis, and Public Policy Implications*

Andrew Levin, William Hanage,
Nana Owusu-Boaitey, Kensington Cochran,
Seamus Walsh, and Gideon Meyerowitz-Katz
November 13, 2020

NBER Conference on COVID-19 and Health Outcomes

* Forthcoming, European Journal of Epidemiology

Challenges in Assessing the Severity of COVID-19

- A large fraction of cases are asymptomatic or only mildly symptomatic and may not be fully reflected in official case reports.
- Availability of live virus tests (RT-PCR) has varied over time, across geographical locations, and between demographic groups.
- Seroprevalence studies (antibody tests) have varied widely in sample design and reporting.
- Divergent results have fueled intense controversy about appropriate public health measures for addressing the pandemic.

Example: New York City, Spring 2020

	<u>Number</u>	Share of Infections
NYC Residents	8 million	NA
Total Infections (estimated 4/28/20)	1-6 million	100%
Symptomatic Infections	1-1 million	65%
Reported Cases	220 thousand	12%
Hospitalized patients	55 thousand	3%
Confirmed fatalities (as of 5/22/20)	17 thousand	1%

Sources: Rosenberg et al. (2020), NYC Dept. of Health (2020)

Our Approach

- Systematic Review: sift data from seroprevalence studies and countries with comprehensive tracing programs.
- Metaregression: estimate infection fatality rate (IFR) as a log-linear function of age, where each observation is the prevalence for a specific age group in a specific geographical location.
- Out-of-Sample Analysis: compare metaregression predictions to other seroprevalence studies.
- Population IFR: use age-specific IFRs to assess and compare overall IFR across geographical locations.

Systematic Review: Excluded Studies

- Developing Countries
 - Differences in Health Care Systems
 - Limitations on Real-Time Fatality Reporting
- No Age-Specific Prevalence or Fatality Data
- Seroprevalence Indistinguishable from Zero
- Accelerating Outbreaks
 (Deaths rise 500% or more over subsequent 4 weeks)
- Non-Representative Samples
 - Active recruitment of participants
 - Patients from hospitals and urgent care clinics
 - Kidney dialysis patients
 - Blood donors

Examples of Excluded Studies

Excluded Sample	Estimated Prevalence	Representative Sample	Estimated Prevalence
New York City Outpatient Clinics	44%	New York City (NY Dept of Health)	23%
Oise, France Elementary School	26%	Hauts-de-France (Pasteur Institute)	1.9%
Tokyo Outpatient Clinics	3.8%	Tokyo (Japan Ministry of Health)	0.1%

Note: Each of these excluded studies was included in the meta-analysis of loannidis (WHO Bulletin, Oct. 2020).

Systematic Review: Seroprevalence

- Antibody Tests
 - Specificity: incidence of false positives
 - Sensitivity: incidence of false negatives
- Adjustment for Test Characteristics
 - ▶ Ideal: use Bayesian approach that reflects uncertainty about test characteristics; cf. Manski & Molinari (2020), Gelman & Carpenter (2020)
 - Practical: in the absence of detailed sampling info, we use the Gladen-Rogan formula:

$$Prevalence = \frac{raw\ prevalence + specificity - 1}{sensitivity + specificity - 1}$$

➤ Robustness: our appendix compares G-R vs. Bayesian estimates of prevalence where feasible.

Time Lags in Incidence & Reporting of COVID-19 Fatalities

Meta-Analysis Flow Diagram

Metaregression Results

The Link between IFR and Age

Sensitivity Analysis

- Stability across Age Categories
 Age < 35, 35 ≤ Age ≤ 60, and Age > 60 years
- Robustness to Exclusion of Top Age Groups
- Forest Plots
- Assessment of Publication Bias
 - > Funnel chart
 - Egger's test
 - ➤ Trim-and-fill
- Out-of-Sample Analysis
 - Multiple seroprevalence studies of a location
 - Small-scale prevalence studies (Diamond Princess, Castiglione d'Adda)

Geographical Variations in Population IFR

Age-Specific Risks in Context

Age Group	COVID-19 IFR (%)	U.S. Automobile Fatalities (%)
0 to 34	0.004	0.015
35 to 44	0.068	0.012
45 to 54	0.23	0.013
55 to 64	0.75	0.013
65 to 74	2.5	0.013
75 to 84	8.5	0.017
85+	28.3	0.019

Implications for Current U.S. Prevalence

Age Group	COVID-19 Deaths (as of 11/12/20)	Implied Prevalence
0 to 44	7,157	16%
45 to 64	43,064	11%
65 to 74	52,111	7%
75 to 84	64,391	5%
85+	74,618	4%
All Ages	241,340	13%

Sources: Center for Disease Control & Prevention, Johns Hopkins University, authors' calculations.

Directions for Further Research

- Comorbidities: a recent study using a very large longitudinal sample (UK Biobank) found measures of comorbidity and frailty did not have significant effects on mortality risk, controlling for age & sex.
- Improving Treatments: mortality rates of Florida hospitalized patients during July-September were about 10 to 20% lower than in March-June.
- Non-Fatal Cases: COVID-19 may have severe and protracted adverse health consequences.
- Developing Countries: the pandemic has been devastating in Brazil (160K deaths), India (120K), Mexico (90K), and other locations. Analysis of prevalence and IFR is urgently needed.

Conclusions

- Severity: COVID-19 is much more dangerous than seasonal influenza.
- Vulnerability: COVID-19 is hazardous not only for the elderly but for middle-aged adults.
- Endogeneity: the population IFR of COVID-19 is not a fixed parameter but crucially depends on the age distribution of infections.
- Policy Implications: public health measures and communications should be aimed at insulating vulnerable age groups.